
UCRL-WEB-200040

CHAOS: Linux from Livermore

CHAOS: Linux from Livermore - 1

Table of Contents

Preface 3
Introduction 4

CHAOS Goals 4
CHAOS Features 6

Problems Addressed 6
Diskless Node Support 8
Managing Graphics Libraries 9

High-Performance Interconnect 10
Scalable Parallel File System 12
Parallel Resource Manager (SLURM) 14
Cluster Administration Tools 17

For System Administrators 17
For Users of NUMA Nodes 22

TASKSET (Set CPU Affinity) 24
NUMACTL (Control Memory Policy) 26
NUMA-MAPS (Display Memory Use) 28

Environment Variables For CHAOS 29
Exec-Shield Security Feature 31
Disclaimer 33
Keyword Index 34
Alphabetical List of Keywords 35
Date and Revisions 36

CHAOS: Linux from Livermore - 2

Preface

Scope: This manual explains the goals and user-relevant features of CHAOS, which is
Livermore Computing's Clustered High-Availability Operating System (a locally
modified version of Linux with associated system support software). This document
explains the goals of the CHAOS project, then introduces the local modifications of
the operating-system kernel, the collection of system-administration tools tuned to
local cluster-management needs, and the other broad aspects of CHAOS service to
users (such as file systems and resource management).

For a comparison of local Linux features with features of other LC operating systems
(especially AIX), see Linux Differences (URL: http://www.llnl.gov/LCdocs/linux).
For details on the user tools provided by the Simple Linux Utility for Resource
Management (SLURM), see LC's SLURM Reference Manual (URL:
http://www.llnl.gov/LCdocs/slurm).

Availability: Some version of CHAOS now runs on every LC Linux cluster, open and secure.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, SCF e-mail: lc-hotline@pop.llnl.gov).

Printing: The print file for this document can be found at:

OCF: http://www.llnl.gov/LCdocs/chaos/chaos.pdf
SCF: https://lc.llnl.gov/LCdocs/chaos/chaos_scf.pdf

CHAOS: Linux from Livermore - 3

http://www.llnl.gov/LCdocs/linux
http://www.llnl.gov/LCdocs/slurm
http://www.llnl.gov/LCdocs/chaos/chaos.pdf

Introduction

CHAOS Goals
CHAOS (Clustered High Availability Operating System) is Livermore Computing's localized version

of Linux. CHAOS is maintained by local software developers to meet the special needs of local users (and
their system administrators).

WHAT.
The commercial Red Hat (brand) "boxed set" distribution of Linux forms the core of CHAOS. LC staff
members have:

• modified some features to better support the scientific computing priorities typical at Livermore, and
different from most business-oriented installations of Linux,

• added extra support for LC's very large clusters of nodes intended for parallel computations, and

• focused on just the hardware and software found in LC production systems, to maximize the relevant
return on local programming investment.

WHY.
After experimenting with several approaches to Linux use on LC machines, the staff of the Livermore
Linux project decided that the best way to provide a good production and program-development environment
with Linux was to focus on issues usually neglected when Linux is sold, installed, or applied commercially.
Central to this "Livermore model" of computing is an emphasis on:

• High-performance computing (HPC) techniques, including the use of large clusters, big data files,
and very long-running jobs often seen at LC.

• LC computational needs, especially for systems that enable rich simulations of a narrow set of
numerical problems assisted by extensive and carefully tailored technical support.

• Local system administration style (not superficial or turnkey but "deep," with strong, on-going
feedback between system administrators and system-software developers).

In many ways this approach to Linux establishes once again a style of operating-system design and
management common at Livermore during the LTSS/CTSS era a decade ago (when another locally
developed system embodied commitment to the same three dominant characteristics listed here).

HOW.
CHAOS, with the local modifications and threefold emphasis described here, evolved from several years
of LC collaborations with current or former vendors on experimental high-performance computing systems.
Frustration with the pace or outcome of several of those efforts led LC to refocus on a more independent
Linux path during 2001. The first large-scale deployments of CHAOS appeared in 2002 (on what was
formerly called the secure-network Production Capacity Resource (clusters Adelie and Emperor), then on
the 1152-node, open-network Multiprogrammatic Capability Resource cluster MCR).

LC's primary administrative strategies to build and refine CHAOS involve:

• a few carefully chosen company partnerships, rather than reliance on broad, amorphous, sometimes
divisive Linux collaborative work groups or committees, and

CHAOS: Linux from Livermore - 4

• open source sharing of nonproprietary new features (under the DOE-approved GNU General Public
License), rather than reliance on the usual UC/LLNL highly constrained approach to intellectual
property management.

TECHNICAL BACKGROUND.
Additional technical information on CHAOS and related hardware (Intel-chip Linux cluster) trends is
collected and posted by project developers on the OCF web site

http://www.llnl.gov/linux

as the CHAOS staff releases it to the computer-science community. Details on the CHAOS resource
manager (called SLURM) appear in the separate SLURM Reference Manual (URL:
http://www.llnl.gov/LCdocs/slurm) (a section below (page 14) summarizes SLURM's innovative
user-support features). The "exec-shield" security feature (page 31) was added to CHAOS as version 3.0
gradually deployed on LC machines in late 2005.

CHAOS: Linux from Livermore - 5

http://www.llnl.gov/linux
http://www.llnl.gov/LCdocs/slurm

CHAOS Features
Livermore's Linux project has addressed four specific technical problems, identified in 1998, that

needed to be solved to meet the general computing goals described in the subsection above. CHAOS is
the outcome of that project. CHAOS solves these four key problems by enriching open-source Linux with
either current or still-unfolding special, locally developed, system features (each explained in its own
section below). In this way it overcomes the lack of integration testing and release discipline that often
undermines large-scale open-source collaboration.

Problems Addressed

The four problems that the distinctive extra features of CHAOS address are:

• A high-performance interconnect (page 10) (internal network or "switch") for message passing
among Linux-based compute nodes.
SOLUTION: device drivers for Quadrics QsNet.

• A scalable parallel file system (page 12) with both hardware and software support for fast parallel
I/O.
SOLUTION: Lustre Lite (software) and Blue Arc servers (hardware).
See the Lustre section of LC's I/O Guide (URL:
http://www.llnl.gov/LCdocs/ioguide/index.jsp?show=s7) for details.

• A portable (vendor-independent) resource manager (page 14) for batch jobs, optimized for LC's
job-control needs and able to invoke any of several different job schedulers (URL:
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s3.4) (FIFO, backfill, or others).
SOLUTION: SLURM, deployed in fall, 2003.

• Reliable and efficient administrative tools (page 17) for very large clusters of Linux-based compute
nodes.
SOLUTION: a family of CHAOS management tools, some for staff and some for users.

The CHAOS operating system kernel is based on commercial Red Hat kernel releases instead of generic
"stable Linux kernel releases" to provide a (more) reliable, predictable, focused way to both fix errors and
report new-found problems. LC has modified the Red Hat kernel to support the special computing needs
of LLNL users with (a) added or updated device drivers, (b) increased resource limits (for example, CHAOS
allows 8192 instead of just 1024 file descriptors per process), (c) crash dump support to manage trouble
during big production runs, (d) serial console logging, and (e) changes to enable parallel debugging tools
like TotalView.

CHAOS: Linux from Livermore - 6

http://www.llnl.gov/LCdocs/ioguide/index.jsp?show=s7
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s3.4

To determine which version of CHAOS an LC machine is currently running, execute

uname -a

and look in the third field (from the left) in the output line returned. If that field contains

• [Red Hat] 2.4.21, then the machine uses CHAOS 2.0;

• [Red Hat] 2.6.9, then the machine uses CHAOS 3.0.

CHAOS: Linux from Livermore - 7

Diskless Node Support

Starting with CHAOS 3.2 (spring, 2007), this operating system supports compute clusters (such as
Atlas, Zeus, Rhea, Hopi, and Yana) whose nodes have no local hard disks. The file systems that normally
reside on each local disk are served instead from NFS-mounted remote disks.

Enabling diskless clusters has both advantages and disadvantages for users.

ADVANTAGES.
The prime user benefit of diskless clusters is reliability. With no local disks to fail on thousands of separate
nodes, the cluster is up more often and repair costs are reduced.

DISADVANTAGES.
(1) Diskless nodes have no swap space. An application that runs out of memory (usually 16 Gbyte/node)
cannot swap to disk. Normally the CHAOS Out Of Memory (OOM) killer terminates such applications
(unless memory overcommit is disabled). SLURM jobs ended by the OOM killer receive a characteristic
message in STDERR, with the format

 slurmd[host]: taskn: [name] terminated by OOOM killer
 slurmd[host]: task0: VmSize: xxxM RSS: yyyM

where

host is the node where the killed task was running,

taskn is the task ID of the terminated task,

name specifies the process that was killed,

xxx is the virtual memory size of the killed process, and

yyy is the resident size of that process when it was killed.

(2) Temporary file systems use RAM, not disk. This means that any files in /tmp or /var/tmp use real
memory on the node, rather than disk space. If you delete files from these temporary file systems, CHAOS
reclaims the memory used. Also, CHAOS purges these file systems completely between jobs on diskless
nodes. To preserve files between jobs, therefore, you must use HPSS archival storage, the Lustre parallel
file system, or one of the /nfs/tmpn file systems.

CHAOS: Linux from Livermore - 8

Managing Graphics Libraries

Before CHAOS 3.2, the Mesa graphics library and the NVIDIA graphics library interferred with each
other on LC Linux/CHAOS clusters (because the operating system allowed the NVIDIA installer to
overwrite Mesa libGL files in /usr/lib64 or /usr/lib).

Starting with CHAOS 3.2 (spring, 2007), NVIDIA files are installed in /usr/nvidia instead of /usr/lib64.
The X-server configuration file and the system default library search path now look for libGL in /usr/nvidia
before checking the usual library directories. And X11 now always renders with NVIDIA rather than with
Mesa.

The chart below shows the default (mixed) graphics library and default include files on LC Linux
clusters running CHAOS 3.2 or later versions. It also shows how you can switch to the alternative, nondefault
library or include files if either default setting is not best for your work:

Include FilesGraphics Library
Mesa include filesNVIDIA libGLDefault

Put /usr/lib64 into
LD_LIBRARY_PATH
environment variable

Change GL to Mesa

Compile with
-I /usr/nvidia/include
g++ option

Change includes to
NVIDIA's

CHAOS: Linux from Livermore - 9

High-Performance Interconnect
Local support for a high-performance interconnect (internal network) among CHAOS cluster nodes

developed in several stages.

QUADRICS/ELAN SUPPORT:
First, the Linux Project ported the Quadrics QsNet device drivers and related software from Compaq Alpha
chips running Compaq's proprietary Tru64 version of UNIX to the same chips but running Red Hat Linux.
As a result, QsNet under Linux not only executed reliably, but it slightly outperformed the original Tru64
version (with a maximum bandwidth of 210 Mbyte/s).

Second, the Linux Project staff shifted focus to Intel chips and locally modified Red Hat Linux for
QsNet support. Quadrics, for their part, released most of their software under an open source license and
concentrated their business on Linux platforms. Meanwhile, the LC collaborators modified the system
kernel used locally (now called CHAOS) to once again support QsNet in three ways:

• LC added (improved) device drivers for Quadrics Elan3 and Elan4.

• LC included the Quadrics software environment to run parallel jobs across a cluster (such as libelan,
a low-level library of message-passing functions).

• LC packaged with CHAOS the Quadrics MPING ping-pong test, as part of a basic MPI test suite.

The QsNet interconnect is now available on some LC CHAOS-based Linux clusters (such as Thunder,
Lilac, and ALC). Besides its direct benefits, it enables other, higher-level system features, such as a scalable
parallel file system (next section).

The Elan Communication Library (libelan, mentioned above) helps optimize MPI behavior on Linux
clusters with the Quadrics switch. Twenty-one environment variables (most begin with the characteristic
string LIBELAN_) allow you to manage the impact of this library to:

• work around application hangs caused by communication problems,

• improve code performance under Linux (CHAOS),

• handle large amounts of message-passing memory, and

• enable Elan library support for MPI debugging.

For a current list of these environment variables and their specific roles, see this (open-network only) web
site:

http://www.llnl.gov/computing/mpi/elan.html

CHAOS: Linux from Livermore - 10

http://www.llnl.gov/computing/mpi/elan.html

INFINIBAND (OPENIB) SUPPORT:
In 2003 an ASC PathForward project began to promote commercial support for a much faster interconnect
called Infiniband. The national laboratories worked with industrial partners and open-source software
efforts in a collaboration (partly ASC funded) called OpenIB (see www.openib.org (URL:
http://www.openib.org) for background). By 2005 the first high-performance computing (HPC) release of
OpenIB became available. By 2006, LC began installing clusters (the Peleton procurement, involving
machines such as Atlas and Zeus (OCF), and Rhea and Minos (SCF)) that featured an Infiniband internal
network.

CHAOS evloved to support this switch innovation. By May, 2007, CHAOS version 3.2 was developed
specifically for such clusters and was deployed (exclusively) on them, with OpenIB support included.

CHAOS: Linux from Livermore - 11

http://www.openib.org

Scalable Parallel File System
GOALS:

One major service goal of CHAOS is to enable a special-purpose file system with these unusual properties:

• PARALLEL--
allows several processes to successfully read from or write to (parts of) the same file at the same
time (parallel I/O), including the case where not all parts of "a file" are contiguous on a single disk.

• SCALABLE--
can grow very large, including many disks, with no loss of functionality or performance.

• GLOBAL--
is available to all nodes in a cluster, even a very large cluster, at the same time (and perhaps later,
to nodes spread across many clusters, as with LC's NFS-mounted common home directories).

• SECURE--
allows jobs to readily access their own files, even if distributed across devices in a file system, while
protecting each job's files from interference by other jobs running at the same time (with access
authentication suitable for LLNL secure networks).

PHASES:
This goal has been approached in three phases, each of which yielded some technical refinements that
helped enable the next phase.

• Compaq Partnership (2000)--
sought to port the Petal/Frangipani research file system to Compaq (Alpha-chip) Linux nodes, taking
advantage of earlier QsNet work (page 10) for high-bandwidth file transport of file-system
information.

• ASCI PathForward (2001)--
collaborated with Cluster File Systems Inc. to develop an experimental open-source, distributed,
object-based file system with the properties specified above, for Linux nodes that use Intel chips.

• Lustre Lite (current phase)--
refocused the previous effort on providing a practical, scaled-down version of a POSIX-conformant
parallel file system for single (that is, not globally mounted) clusters implemented at Livermore
Computing.

◊ One aspect of this work involved moving beyond the usual "redundant array of inexpensive
disks" (RAID) by designing distributed file storage using a set of virtual disks or "Object
Storage Targets" (OSTs) instead. Each OST is a self-managed CPU/drive combination.

◊ Another aspect of this work recruited Blue Arc Corporation to build a suitable underlying
"storage appliance" to implement the OST design. Lustre Lite has been deployed on LC
Linux/CHAOS clusters, and even cross-mounted among multiple LC clusters. Some scalability
and reliability problems persist (see below).

CHAOS: Linux from Livermore - 12

USAGE ADVICE:
User information for the current Lustre implementation, which compares the actual features of LC's Lustre
file systems with those of IBM's GPFS, as well as points out known pitfalls involving directory names and
interactions with MPI-IO, is available in the Lustre section (URL:
http://www.llnl.gov/LCdocs/ioguide/index.jsp?show=s7) of the online I/O Guide for LC.

REFINEMENTS WITH CHAOS 3.2:
Deploying CHAOS 3.2 (and later) starting in May, 2007, which includes Lustre 1.4.8, addressed three
serious operational problems with earlier Lustre versions--

• Page Cache Flush--
Under CHAOS 3.2, the SLURM epilog script that always executes immediately after your job script
now flushes the page cache of Lustre pages (clean and dirty) after every job. This guarantees that
the next job will start with all memory available and with no interference from delayed I/O.

• Assertion Failures--
Under CHAOS 3.2 (Lustre 1.4.8) any Lustre assertion failures on a compute node cause the node to
panic and jobs to completely terminate. Previous Lustre versions allowed nodes with assertion failures
to lapse into a strange, partly failed state.

• FLOCK and FCNTL--
Under CHAOS 3.2, system calls to FLOCK(2) and FCNTL(2) to lock Lustre files always return an
error. This may affect some MPI-IO and HDF5 software. Previously, separate tasks running on
different clients could use FLOCK or FCNTL to simultaneously obtain exclusive locks on the same
file, clearly an operational mistake.

CHAOS: Linux from Livermore - 13

http://www.llnl.gov/LCdocs/ioguide/index.jsp?show=s7

Parallel Resource Manager (SLURM)
The primary threefold purpose of a cluster resource manager (such as LoadLeveler on LC's IBM ASC

machines or the Resource Management System (RMS) from Quadrics) is to:

• Allocate nodes--
give users access (perhaps even exclusive access) to compute nodes for some specified time range
so their job(s) can run.

• Control job execution--
provide the underlying mechanisms to start, run, cancel, and monitor the state of parallel (or serial)
jobs on the nodes allocated.

• Manage contention--
reconcile competing requests for limited resources, usually by managing a queue of pending jobs.

At LC, an adequate cluster resource manager needs to meet two general requirements:

• Scalable--
It must operate well on clusters with as many as several thousand nodes, including cases where the
nodes are heterogeneous (with different hardware or configuration features).

• Portable--
It must ultimately support jobs on clusters that have different operating systems or versions, different
architectures, different vendors, and different interconnect networks. Linux/CHAOS is, of course,
the intended first home for this software, but in summer 2006 LC began installing the same (vendor
independent) resource manager on both Linux/CHAOS and AIX clusters.

Any LC resource manager must also meet two additional, locally important, requirements:

• Compatible with LCRM--
Since a resource manager is not a complex scheduler nor a complete batch system with across-cluster
accounting and reporting features, it must support and work well within such a larger, more
comprehensive job-control framework. At LC, the Livermore Computing Resource Management
(LCRM) system, formerly called the Distributed Production Control System (DPCS) (URL:
http://www.llnl.gov/LCdocs/dpcs), provides that metabatch framework.

• Compatible with QsNet--
Since LC's Linux Project has already refined QsNet (page 10) as its preferred high-speed interconnect
for Linux/CHAOS clusters, an adequate resource manager must also allocate Quadrics QsNet resources
along with compute nodes. (A flexible resource manager will be interconnect independent.)

Finally, to fit well into the emerging CHAOS environment, a resource manager at LC should ideally
have these two very beneficial extra properties as well:

• Fault Tolerant--
Innovative scientific computing systems are often much less stable than routine business clusters,
so a good local resource manager should recover well from many kinds of system failures (without
terminating its workload), including failure of the node where its own control functions execute.

CHAOS: Linux from Livermore - 14

http://www.llnl.gov/LCdocs/dpcs

• Open Source--
The software (source code) should be freely sharable under the GNU General Public License, as
with other nonproprietary CHAOS components.

No commercial (or existing open source) resource manager meets all nine of these needs. So since
2001 Livermore Computing, in collaboration with Linux NetworX and Brigham Young University, has
developed and refined the "Simple Linux Utility for Resource Management" (SLURM). The summary of
its requirements above gives a good profile of SLURM's role and design strategy. But it says little about
how SLURM actually works.

This diagram shows SLURM's architecture (from the system point of view):

 SRUN -| -------------
 | | |
 SCANCEL -|--------| SLURMCTLD |--------| SCONTROL
 | | |
 SQUEUE -| -------------
 | |
 SINFO -| ---------------------
 | | |
 SLURMD SLURMD SLURMD
 (...compute nodes...)

At the center is SLURM's centralized work manager (SLURMCTLD) or control daemon (with a duplicate
backup for reliability, not shown). Along the bottom are the SLURMD daemons residing on every compute
node, each of which runs jobs locally as a remote shell. (On BlueGene/L, compute nodes can execute only
a single process so the SLURMD daemon runs instead on one of the BlueGene/L "front end nodes," but
it fills the same role.) User tools (left side) allocate resources and start jobs (SRUN) on SLURM-managed
nodes, terminate them (SCANCEL), report job status (SQUEUE), and separately report current node and
partition status (SINFO). The administrative tool SCONTROL (right side) monitors and modifies
configurations and job states. These SLURM parts were tested on an LC Linux system during 2002, then
deployed for public use with the release of CHAOS 1.2 across all LC Linux clusters (that had a suitable
switch) in the fall of 2003.

From the user point of view, SRUN is the central SLURM tool. SRUN offers over 65 command-line
options that you can combine to provide:

• five ways to execute your parallel jobs. These include an interactive way much like using POE on
IBM/AIX machines as well as "local batch" (without LCRM) and "global batch" (with LCRM)
alternatives.

• elaborate control over resource allocation. You can specify not only the total number of nodes for
your job but also the CPUs/process (multithreading), processes/CPU (overcommitment), and even
specific node ranges or hostnames to use or avoid, and you can bind tasks to CPUs or memory.

• fine-grained I/O management. You can separately redirect your job's input, output, and standard
error to (or from) specified files on a per-job, per-step, per-node, or per-task basis.

• detailed influence on your job's working features. You can change your job's reported name, default
path, debug level, imposed "constraints" (much like PSUB), the verbosity of SRUN messages about
it, and the type of MPI invoked.

CHAOS: Linux from Livermore - 15

On CHAOS machines, jobs submitted to SLURM using SRUN (either as a stand-alone utility or
executed within an LCRM script) can be monitored for progress and resource use with the SQUEUE
reporting tool. SQUEUE thus fills the role for CHAOS and SLRUM that SPJSTAT fills for AIX and
LoadLeveler on IBM machines. And like SPJSTAT, SQUEUE reports jobs by means of their
SLURM-assigned "local" job ID rather than their LCRM JID (even if they have one). SQUEUE also lets
users request customized job-status reports, in which they can specify both the job features reported (from
a list of 24) and the order in which reported jobs are sorted.

Likewise, on CHAOS machines, compute resources managed by SLURM can be monitored for features
or availability with the SINFO reporting tool. SINFO thus fills the role for CHAOS that LLSTATUS fills
for AIX on IBM machines. Like LLSTATUS, by default SINFO reports broadly on all node partitions,
but you can focus on specific nodes or node sets if you wish. And like SQUEUE, SINFO offers customization
options to change not only the node properties reported but also the order or format of columns shown in
SINFO output.

On BlueGene/L only, an additional SLURM tool called SMAP shows the topological distribution of
jobs among nodes (because job geometry is important on that machine's unusual architecture).

More details on SLURM, including how its subsystems interact with each other, how users interact
with SLURM, the many specialized job-control features offered by the SRUN tool, and the customization
possibilities for SQUEUE, SINFO, and SMAP output, appear in the SLURM Reference Manual (URL:
http://www.llnl.gov/LCdocs/slurm). In 2006, LC began replacing LoadLeveler with SLURM for resource
management even on its AIX machines. For an AIX/CHAOS and LoadLeveler/SLURM cross-comparison
matrix, see the "SLURM and Operating Systems" section (URL:
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s2.3) of the SLURM Reference Manual.

CHAOS: Linux from Livermore - 16

http://www.llnl.gov/LCdocs/slurm
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s2.3

Cluster Administration Tools
Managing a cluster of many compute nodes often involves performing the same task on every node,

or comparing the status or behavior of all nodes, or partitioning the nodes using planned configuration
differences and then taking account of those differences for all future software updates. As the number of
nodes grows (from clusters of 10 to 100 to over 1000 nodes), the difficulty of cluster management grows
too and serious inefficiencies can appear.

The first subsection below summarizes special CHAOS-supported tools for system administrators. The
second subsection introduces user tools to help anyone manage "NUMA (nonuniform memory access)
nodes" on some LC Linux/CHAOS clusters.

For System Administrators
Open source cluster administration tools for Linux seldom scale up to the size of the clusters now

common at Livermore Computing. So the customized CHAOS environment includes several extra, locally
developed tools to promote efficient administration of very large LC clusters:

ConMan provides console management.

Every node in an LC Linux cluster is accessible via a serial console connection because
the console is often the only way to (re)configure the node or check error messages
if networking or other serious problems occur. But of course hundreds of tightly
packed clustered nodes do not have literal monitors and keyboards attached to display
and manipulate their consoles. And they often reside in buildings distant from their
system administration staff.

So the CHAOS environment offers ConMan, a customized console-management
program designed to maintain a persistent connection to many console devices and
simultaneous users remotely. ConMan now:

• supports local serial devices and remote terminal servers with the TELNET
protocol.

• maps symbolic names onto physical console devices and logs output from
specified consoles into a file for later review.

• connects to virtual consoles in monitor (read-only, for continuous logging),
interactive (read-write, for executing commands), or broadcast (write-only)
mode.

• allows "joining" with existing clients if a console is already in use, or instead
"stealing" the console's privileges.

• allows scripts to execute across multiple consoles in parallel.

Recent versions of ConMan are available through the OCF web site

http://www.llnl.gov/linux/conman

CHAOS: Linux from Livermore - 17

http://www.llnl.gov/linux/conman

Genders facilitates cluster configuration management.

A standard practice among LC system administrators is to codify all changes made
to a cluster in a way that allows the changes to be quickly reapplied after a fresh
installation. Genders facilitates this by enabling identical scripts to perform different
functions depending on their context.

Genders is a simple, static, flat-file database (plain-text file) that represents the layout
of a whole cluster. A Genders file (usually in /etc/genders) contains a list of
node-name/attribute-list pairs, and a copy resides on each node in the cluster. Scripts
then perform Genders-file lookups to configure each of many nodes appropriately.
Genders also includes an rdist distfile preprocessor to expand attribute macros, so a
central repository of system files can even propagate correctly to multiple clusters
using this technique.

Among the current Genders software tools are:

• NODEATT--
a query tool that lists all nodes with a specified attribute (useful as a conditional
test in scripts).

• DIST2--
an rdist preprocessor that can quickly redistribute appropriate configuration file
variations when a Genders file changes.

• CROUTE--
a Perl script that expresses network routing schemes (for load balancing) in a
single configuration file.

• C and Perl APIs--
to query Genders files or, with the help of PDSH (below), to target a command
to just those nodes that share a common Genders attribute.

Recent versions of Genders are available through the OCF web site

http://www.llnl.gov/linux/genders

Intelligent Platform Management Interface (IPMI)

is a standard specification, developed by Dell, HP, Intel, and NEC, for a way to
remotely monitor and manage the physical status (temperature, air flow, power) of
computer nodes. IPMI is implemented by hardware vendors at the chip level, so
application users are often unaware of it. It relies on a "baseboard management
controller" (BMC), a small processor that supports IPMI separately from each chip's
main CPU and its operating system.

CHAOS: Linux from Livermore - 18

http://www.llnl.gov/linux/genders

CHAOS system administrators use several locally developed software tools to take
advantage of IPMI features to check or control nodes on LC's large Linux clusters
(all are shared as open source):

BMC-WATCHDOG

runs as a daemon to manage and monitor the "baseboard management
controller" (BMC) timer, which enables several system timeout
functions as well as resetting after each operating system crash.

IPMIPING implements the IPMI ping (path checking) protocol, as well as the
Remote Management Control Protocol. Both are used mostly to
debug IPMI over local area networks.

IPMIPOWER works in conjunction with PowerMan (see below) to remotely control
compute-node power supplies by using IPMI.

PAM (Pluggable Authentication Modules for Linux) simplifies both user authentication
and the management of resource limits for Linux clusters.

Strictly speaking, PAM is a suite of shared libraries designed to provide middleware
that bridges "access applications" (such as FTP, LOGIN, PASSWD, and SSH) and
authentication mechanisms (Kerberos, DCE, RSA SecureID tokens). All Red Hat
Linux systems come with PAM by default because this makes authentication
management much easier for system administrators.

In addition, CHAOS systems that use LCRM to control batch jobs and to manage job
resources have taken advantage of PAM to simplify the use of resource limits as well.
Starting in February, 2006, system administrators no longer need to modify local
LCRM configuration files to alter resource limits because LCRM now lets PAM
manage four CHAOS limits dynamically: core size, stack size, number of open file
descriptors, and number of processes allowed for any single user.

CHAOS: Linux from Livermore - 19

PDSH executes commands on remote hosts in parallel.

The Parallel Distributed Shell (PDSH) utility is a multithreaded remote shell client
for system administrators, simmilar to IBM's DSH tool but with better error handling.
PDSH offers several remote shell services including RSH, SSH, and Kerberos IV. It
is designed to gracefully handle the usual kinds of node problems, such as when a
target node is down or slow to respond. Using PDSH lets a system administrator:

• execute commands across all nodes of a large cluster as if it were a single
machine (simple commands can execute on over 1000 nodes of a typical cluster
in less than 2 seconds), and

• run small MPI jobs in parallel across the QsNet interconnect, which is helpful
for trying parallel test cases or interconnect diagnostics on a new system that
still lacks a regular resource manager. (page 14)

Recent versions of PDSH are available through the OCF web site

http://www.llnl.gov/linux/pdsh

PowerMan manages clustered-system power controllers.

Power management for a large cluster poses challenges very like those posed by
console management (above). To minimize circuit loads or focus repairs, a system
administrator may want to boot an entire cluster, just one rack, or even an individual
node. And as with consoles, remote power control is important when the cluster resides
in a different building than the staff.

PowerMan therefore provides a remote, command-line interface for a wide variety
of power-control and monitoring devices, through a TCP network connection. There
is no standard protocol for a power-control device interface, so PowerMan offers a
flexible configuration that can adapt to almost any hardware. PowerMan can query
both plug and power supply output status, and it can power-on, power-off, power-cycle,
and hard-reset individual nodes or node ranges in a CHAOS cluster. Where hardware
allows, PowerMan can also flag nodes needing service and gather out-of-band
temperature data.

Recent versions of PowerMan are available through the OCF web site

http://www.llnl.gov/linux/powerman

CHAOS: Linux from Livermore - 20

http://www.llnl.gov/linux/pdsh
http://www.llnl.gov/linux/powerman

WHATSUP quickly detects and reports which nodes are currently up and down within the Linux
cluster where you run it. When executed (by any user, not just administrators) with
no options, WHATSUP summarizes the count and name list of up nodes, followed
by the count and name list of down nodes (then automatically ends). You can optionally
report only up nodes (--up), only down nodes (--down), or node lists not summarized
but instead separated by commas (--comma), returns (--newline), or blanks (--space).

YACI installs the operating system on cluster nodes.

Livermore Linux clusters currently run with a full copy of the CHAOS/Red-Hat
operating system on every node. The alternative, using a root file system shared across
nodes, posed concerns about the performance and reliability of network file servers
(as well as complications regarding the integrity of Red Hat "packaging"). Multiple
copies on multiple nodes, however, means that deploying or upgrading the operating
system requires a scalable way to transfer (or "image") the operating system onto a
large number of nodes. No available open source techniques (such as VA System
Imager and LUI) met local needs. So the CHAOS staff developed YACI (Yet Another
Cluster Installer).

A YACI installation begins by creating a disk partition and placing the needed files
in a staging partition. These are then converted into compressed TAR images
("tarballs"). Cluster installation continues by installing management node(s) from a
YACI CD-ROM, then network booting a stand-alone image onto the remaining nodes.
Finally, each stand-alone image partitions its local disk and deploys the "tarballs" of
the original disk partition. Once the management node(s) are configured, YACI can
install CHAOS on the remaining 1152 nodes of LC's MCR cluster in about 50 minutes.

Recent versions of YACI are available through the OCF web site

http://www.llnl.gov/linux/yaci

CHAOS: Linux from Livermore - 21

http://www.llnl.gov/linux/yaci

For Users of NUMA Nodes
Many of the Linux/CHAOS clusters that LC bought starting in late 2006 (such as Atlas and Zeus) have

hardware with "nonuniform memory access" (sometimes called nonuniform memory architecture), always
abbreviated NUMA. Starting with version 3.2, released in 2007, CHAOS includes extra features to enable
users to more effectively work with NUMA hardware. This section explains basic NUMA concepts and
CHAOS policy regarding NUMA resources. It then introduces (in separate subsections) three user tools
to help manage those resources.

NUMA Hardware:
Linux/CHAOS clusters with NUMA hardware have addressable nodes (such as atlas36 or atlas1151) each
comprised of four "dual-core sockets" (components wtih two CPUs each), as shown here:

 addressable | cpu0 | cpu0 | cpu0 | cpu0 |
 node | cpu1 | cpu1 | cpu1 | cpu1 |
 (atlas1151) -----------------------------
 node0 |node1 |node2 |node3 ---dual-core sockets
 = NUMA nodes

Each socket functions as a kind of subnode (here 0 through 3) with its own CPUs and local memory. But
because the (two) CPUs share their memory with different access rates (that is, nonuniformly), their socket
is a "NUMA node." Each addressable node on LC clusters with NUMA hardware contains four such
NUMA nodes.

This diagram shows in more detail the nonuniformity of memory access within each NUMA node:

 |-----one socket, one NUMA node-------|
 ----------------- -----------------
 | CPU0 | | CPU1 |
 | | | |
 ----------------- -----------------
 | I | D | | I | D | L1 (fast)
 | cache | cache | | cache | cache |
 | | | | | |
 ------------------- -------------------
 | L2 cache | | | | L2 cache | L2 (slower)
 | | | | | |
 ---------------- | | -----------------
 | |

 | crossbar/bus | Remote memory,
 ------------------- local to other CPU
 (slowest)

For each CPU, access to its instruction (I) and data (D) L1 local memory is faster than access to its
local L2 cache. And for each CPU, the other CPU's memory is also accessible (via a bus) but is "remote"
or "foreign." On machines (such as LC's Thunder) where the remote-memory access rate equals the
local-memory access rate, the hardware is called SMP (symmetric multiprocessor). On machines (such as

CHAOS: Linux from Livermore - 22

Atlas or Zeus) where the remote-memory access rate is slower than the local-memory access rate, the
hardware is called NUMA.

Memory Policy:
The default memory policy under CHAOS 3.2 or later on LC machines with NUMA hardware is to allocate
memory to a process from its local NUMA node. This makes it important that processes not be rescheduled
to different CPUs (and certainly not to different NUMA nodes) during long-running jobs. So CHAOS now
automatically enables "CPU affinity" for SRUN-launched jobs on LC machines with NUMA hardware.
CPU affinity keeps a process from moving between CPUs, thus avoiding the performance overhead of
transferring the process's working set between different CPU caches. The three tools described in the
subsections below are available on NUMA-hardware machines to query and adjust this CHAOS memory
policy and the CPU-affinity default setting.

CHAOS: Linux from Livermore - 23

TASKSET (Set CPU Affinity)

TASKSET lets you manage the CPU affinity of your processes on LC Linux/CHAOS machines that
have NUMA hardware. The Linux scheduler honors the CPU affinity that you declare with TASKSET
and will not run the specified process on any other CPUs (or you can discover a process's previously set
CPU affinity). The parent (page 22) of this subsection explains the meaning of NUMA hardware and CPU
affinity more fully. TASKSET can operate on a running process (if you know its PID) or you can launch
a new command with a specified CPU affinity. NUMACTL (page 26) reports information helpful for
planning your use of TASKSET.

SYNTAX:
TASKSET has a rather unusual execute-line syntax. To run it, type:

taskset options [mask|cpulist] [pid|command]

where (from right to left) pid or command specifies the process whose CPU affinity you want to control,
mask or cpulist specifies which CPUs you want to bind to the target process (either by hexadecimal bitmask
or comma-delimited list of CPU numbers, perhaps with hyphenated ranges), and options guide TASKSET's
behavior. The available options are:

-p (--pid) targets a specified running process using its PID instead of launching a new
command. WARNING: the PID always comes at the right-hand end of the execute
line even though the -p option comes at the left-hand end, counterintuitively separated
by the affinity mask or list of CPUs. See the examples below.

-c (--cpu-list) specifies CPU affinity with a comma-delimited list of CPU numbers
instead of with a hexadecimal mask. (Again, the argument for -c falls between -p and
its argument if both -p and -c are used. See the examples below.)

-h (--help) displays a short list of available options and ends.

-V (uppercase vee, --version) reports the current TASKSET version and ends.

EXAMPLES:
Typical examples of using TASKSET and its unusual syntax include--

(A) Report the current CPU affinity (mask) for the process with PID 10403:

taskset -p 10403

(B) Set to hexadecimal ff the CPU affinity (mask) for the process with PID 10403 (note the unusual
ordering of the arguments here, with PID on the right-hand end of the excute line):

taskset -p ff 10403

(C) Set to CPUs 5 and 6 the affinity of running process 10403 (again note the unusual order of the two
arguments):

taskset -pc 5-6 10403

CHAOS: Linux from Livermore - 24

(D) Execute the DATE command only on CPU 4:

taskset -c 4 date

CHAOS: Linux from Livermore - 25

NUMACTL (Control Memory Policy)

NUMACTL has both a reporting role and a role in setting memory policy on LC Linux/CHAOS
machines that have NUMA hardware. The parent (page 22) of this subsection explains the meaning of
NUMA hardware and memory policy.

Some NUMACTL options report on current NUMA node resources or their memory policies. Other
NUMACTL options let you specify the memory policy that applies to a command that NUMACTL executes.
(Still other options, omitted here, set memory policy for "shared memory segments" on machines where
those exist.)

REPORTING NUMA NODES:
To discover details about the NUMA hardware on the addressable node (such as atlas32) where you execute
NUMACTL, type

numactl --hardware|--show

where

--hardware lists the "NUMA nodes" (multiple-cpu sockets) on the current addressable node and
reports the total and free memory for each one. A typical report has the form:

 available: 4 nodes (0-3)
 node 0 size: 3311 MB
 node 0 free: 1072 MB
 ...

--show lists the memory-policy attributes that you can set by using the NUMACTL options
listed below and reports the current value of each attribute. A typical report has the
form:

 policy: default
 preferred node: current
 physcpubind: 0 1 2 3 4 5 6 7
 cpubind: 0 1 2 3
 node bind: 0 1 2 3
 mem bind: 0 1 2 3

SETTING MEMORY POLICY:
To specify your desired memory-allocation policy for the NUMA node(s) where a specified command
executes, type

numactl policyopt command [arguments]

where policyopt is one of the following mutually exclusive alternatives (in order from most restrictive to
most flexible, plus two others for CPUs):

--localalloc (-l) always allocates memory only on the node where the process runs (but no others).

CHAOS: Linux from Livermore - 26

--membind=nodes

(-m nodes) allocates memory only on the specified nodes (a comma-delmited list of
NUMA-node numbers, a hyphen-linked node range A-B, or all). If the specified nodes
lack enough free memory, the allocation fails.

--preferred=node

(no short form) allocates memory "preferably" on the specified node (always a single
node number), but uses memory from other NUMA nodes if the free memory on the
chosen node is insufficient.

--interleave=nodes

(-i nodes) allocates memory round-robin from the specified nodes (same syntax as
for --membind). When free memory is not available on any interleave target node,
memory from other NUMA nodes in the round-robin set is used.

--cpunodebind=nodes

(-N nodes) executes command only on CPUs of the specified node(s) (same syntax
as for --membind).

--physcpubind=cpus

(-C cpus) executes command only on CPUs specified by their physical CPU numbers
as shown in the /proc/cpuinfo file.

CHAOS: Linux from Livermore - 27

NUMA-MAPS (Display Memory Use)

NUMA-MAPS lets you display information about how your current processes are using memory on
NUMA hardware, including files, stack, and heap (or subsets that you select). The parent (page 22) of this
subsection explains the meaning of NUMA hardware as well as the affinity and memory-policy issues that
pertain to it.

To report on your NUMA memory use, type

numa-maps processoption scopeoption

Here processoption selects the process(es) to cover and can be any ONE of these mutually exclusive
alternatives:

--user=uname (-u uname) reports the PID, Unix command, current CPU mask, total memory used
and memory per NUMA node for all processes owned by uname.

--name=string (-n string) reports the PID, Unix command, current CPU mask, total memory used
and memory per NUMA node only for the process whose name exactly matches string
(filter characters are not allowed).

--all (-a) reports on all processes of the user who runs NUMA-MAPS (root users will want
to combine this with -q to ignore kernel threads).

Likewise, scopeoption selects the granularity of the report (the default scope is mapped stack and heap
memory only):

--heap-only (-H) displays NUMA memory information only for the heap.

--stack-only (-S) displays NUMA memory information only for the stack.

--full (-F) displays NUMA memory information for all mapped files, stack, and heap.

If you plan to pipe NUMA-MAPS output into another program for further processing you can omit the
descriptive header by invoking the --no-header (-n) option along with any others. And root users will want
to include --ignore-zero (-q) to skip processes (such as kernel threads) without any mapped pages.

CHAOS: Linux from Livermore - 28

Environment Variables For CHAOS
Just as AIX supports many environment variables unique to IBM's "Parallel Operating Environment"

(POE) (URL: http://www.llnl.gov/LCdocs/poe), intended to help manage parallel jobs only on IBM
machines, so too does CHAOS provide unique environment variables to manage parallel jobs on the LC
Linux clusters where it is the operating system. Currently the CHAOS-only environment variables related
to the Elan library (a Quadrics library of low-level message-passing functions) are in use on LC production
clusters (such as Thunder, Lilac, and ALC).

Default values for CHAOS environment variables are noted if they exist, and for most jobs the default
value is the optimal value. Additional Elan library environment variables, mostly related to controlling
Quadrics switch support for MPI optimization or debugging, are explained at this dedicated web site
(open-network only):

http://www.llnl.gov/computing/mpi/elan.html

The CHAOS Simple Linux Utility for Resource Management (SLURM) uses its own additional
environment variables (all with names that begin with "SLURM_") to store resource-allocation values for
the jobs that SLURM manages. See the "Environment Variables" section of the SLURM Reference Manual
(URL: http://www.llnl.gov/LCdocs/slurm) for an explanatory list. For a big-picture look at how the CHAOS
environment variables here and the SLURM environment variables both fit into the larger, complex set
with which LC manages its systems and jobs, consult LC's Environment Variables user guide (URL:
http://www.llnl.gov/LCdocs/ev).

LIBELAN_GALLOC_EBASE

(default value: 0xb0000000) resizes the Elan global memory heap for MPI collective
operations. EBASE is a pointer to a base virtual address in Elan memory to be used
for the global heap. (Set this variable and the next two if you use MPI collectives,
such as REDUCE, GATHER, SCATTER, or their ALL versions, with more than
about 100 processes.)

LIBELAN_GALLOC_MBASE

(default value: 0xb0000000) resizes the Elan global memory heap for MPI collective
operations. MBASE is a pointer to the main memory base in Elan memory to be used
for the global heap.

LIBELAN_GALLOC_SIZE

(default value: 16777216) resizes the Elan global memory heap for MPI collective
operations. SIZE is the size in bytes of the Elan global heap.

LIBELAN_WAITTYPE

(suggested value: POLL) specifies how a blocking MPI process will share computing
resources (comparable to MP_WAIT_MODE under POE on IBM machines). Possible
values are:

CHAOS: Linux from Livermore - 29

http://www.llnl.gov/LCdocs/poe
http://www.llnl.gov/computing/mpi/elan.html
http://www.llnl.gov/LCdocs/slurm
http://www.llnl.gov/LCdocs/ev

POLL (default) has the receiving thread actively poll for incoming
messages. Use this choice for all MPI jobs on clusters that have a
Quadrics interconnect.

SLEEP has the receiving thread sleep and thus remove itself from the active
dispatching queue.

YIELD has the receiving thread stay in the queue but yield the processor if
it has no work to do.

MALLOC_TRIM_THRESHOLD

(suggested value: -1) see the next item for joint use.

MALLOC_MMAP_MAX

(suggested value: 0) when combined, MALLOC_TRIM_THRESHOLD and
MALLOC_MMAP_MAX force MALLOC to use SBRK() rather than MMAP() to
allocate memory. This improves performance, but it may reduce the total amount of
memory available to your user processes (to no more than 1 Gbyte/process).

MPI_USE_LIBELAN

toggles the Elan library optimizations. Possible values and their roles are:

1 (default) enables the Elan library optimizations.

0 disables the Elan library optimizations. Use this only for debugging,
if you suspect problems with the Elan libraries themselves.

OMP_NUM_THREADS

controls the number of threads spawned by Intel's Math Kernel Library (MKL) routines
when you invoke this threaded library on any of LC's Intel Linux machines (such as
ILX, MCR, or Thunder). By default, MKL sets the number of threads equal to the
number of processors.

CHAOS: Linux from Livermore - 30

Exec-Shield Security Feature
A security feature called "exec-shield" is enabled by default for all executables on LC clusters that run

CHAOS 3.0 (or higher), which was gradually deployed late in 2005. Exec-shield prevents most (but not
all) data areas from becoming executable after an attack that overwrites data structures or that tries to put
malicious code into data structures. It thus protects against (most) stack, buffer, and function-pointer
overflow attacks. This section summarizes how exec-shield works, its computational overhead, possible
negative side effects on some application codes, and how to disable exec-shield for a specific executable
to avoid those side effects.

STRATEGY:
Exec-shield relies on a limit-setting feature available on x86 (but not on Itanium, ia64) processors. Thus
it works on LC Linux machines ALC (on OCF) and Lilac (on SCF), for example, but not on Thunder.

On CHAOS 3.0 (or later) machines (with x86 chips), exec-shield causes the kernel to always maintain
a "maximum executable address" value or "exec-limit." With every context switch, the scheduler enforces
this exec-limit for the code segment of the currently running process or thread. Each process can have a
different exec-limit, which the scheduler imposes dynamically so that the appropriate limit is the one in
play at any time.

In addition, with exec-shield enabled the kernel remaps all standard PROT_EXEC mappings into the
x86 addresses from 0 to 16 Mbyte. This is the "ASCII-armor" area, so-called because addesses here cannot
be jumped to by using ASCII-based overflows (such as extra-long URLs).

The result of these two measures (limiting the executable addresses and protecting those that are
executable from ASCII-based overflows) is that

• the stack,

• the MALLOC heap, and

• most of the MMAP data area (the shared libraries)

are not executable. This provides extensive (though not completely foolproof) protection from overflow
attacks for application codes running under CHAOS 3.0.

OVERHEAD:
Exec-shield was designed to be efficient. Only two or three cycles of overhead are lost for every
PROT_MMAP system call. An additional two or three cycles are lost for every context switch that occurs
with exec-shield enabled.

SIDE EFFECTS:
Application codes that assume a static layout for their program stack and heap, or that make other (previously
harmless) assumptions about the specific layout of virtual address space, may destabilize and show random
crashes under CHAOS 3.0 with exec-sheild enabled. This feature can also make debugging more difficult.

To allow a work-around in case such problems occur, LC has installed exec-shield at "security level
2." This means that it is enabled by default but that you can disable it on request for a specific binary file
for which exec-shield is causing unintended trouble. See the next subsection for work-around instructions.

CHAOS: Linux from Livermore - 31

Note also that CHAOS 3.0 includes the Xorg X-window system instead of the previously used XFree86
version. This is specifically because XFree86 is incompatible with the executable-stack limitations imposed
by enabling exec-shield.

DISABLING EXEC-SHIELD:
To avoid random crashes of a previously stable application code, or to allow effective debugging of a
newly developed code, you can disable the CHAOS-3.0 exec-shield security feature for a specified binary
file in two ways:
(1) At compile time.
Invoke the linker flag -z with the argument execstack. For example, with GCC use

gcc -o test -Wl,-zexecstack test.c

(2) At run time.
EXECSTACK is a user tool to set, clear, or query the executable status of the stack flag for "ELF binaries,"
which is the standard "executable and linking format" for binaries under Linux. If you have already linked
a code and it really needs an executable stack (despite the security risks involved), then run

execstack -s pathname

where the argument here is the full pathname of your executable file.

CHAOS: Linux from Livermore - 32

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes.
(C) Copyright 2007 The Regents of the University of California. All rights reserved.

CHAOS: Linux from Livermore - 33

Keyword Index
To see an alphabetical list of keywords for this document, consult the next section (page 35).

Keyword Description
------- -----------
entire This entire document.
title The name of this document.
scope Topics covered in this document.
availability Where CHAOS runs.
who Who to contact for assistance.

introduction CHAOS operating system overview.
chaos-goals CHAOS design goals, needs met.
chaos-features Key components of CHAOS environment.

problems-addressed Four problems addressed by CHAOS.
diskless-nodes How CHAOS handles diskless nodes.
graphics-libraries Managing NVIDIA, Mesa interactions.

interconnect Support for QsNet node interconnect.

parallel-file-system Requirements, phases of parallel I/O support.

resource-manager SLURM goals, features, and user tools.

cluster-administration Cluster tools supported by CHAOS.
admin-tools Tools for system administrators.
user-tools Tools for users of NUMA nodes.
numa-tools Tools for users of NUMA nodes.

taskset Manages NUMA CPU affinity.
numactl Controls NUMA memory policy.
numa-maps Shows NUMA memory use.

environment-variables CHAOS-relevant env. variables.

exec-shield Exec-shield CHAOS security feature.

index The structural index of keywords.
a The alphabetical index of keywords.
date The latest changes to this document.
revisions The complete revision history.

CHAOS: Linux from Livermore - 34

Alphabetical List of Keywords

Keyword Description
------- -----------
a The alphabetical index of keywords.
admin-tools Tools for system administrators.
availability Where CHAOS runs.
chaos-features Key components of CHAOS environment.
chaos-goals CHAOS design goals, needs met.
cluster-administration Cluster tools supported by CHAOS.
date The latest changes to this document.
diskless-nodes How CHAOS handles diskless nodes.
entire This entire document.
environment-variables CHAOS-relevant env. variables.
exec-shield Exec-shield CHAOS security feature.
graphics-libraries Managing NVIDIA, Mesa interactions.
index The structural index of keywords.
interconnect Support for QsNet node interconnect.
introduction CHAOS operating system overview.
numactl Controls NUMA memory policy.
numa-maps Shows NUMA memory use.
numa-tools Tools for users of NUMA nodes.
parallel-file-system Requirements, phases of parallel I/O support.
problems-addressed Four problems addressed by CHAOS.
resource-manager SLURM goals, features, and user tools.
revisions The complete revision history.
scope Topics covered in this document.
taskset Manages NUMA CPU affinity.
title The name of this document.
user-tools Tools for users of NUMA nodes.
who Who to contact for assistance.

CHAOS: Linux from Livermore - 35

Date and Revisions

Revision Keyword Description of
Date Affected Change
-------- -------- ------
12Jun07 chaos-features Subdivided and expanded.

cluster-administration
 Subdivided and expanded.

diskless-nodes How CHAOS 3.2 handles diskless nodes.
graphics-libraries

 NVIDIA, Mesa complex interactions.
interconnect Infiniband support explained.
parallel-file-system

 Lustre 1.4.8 refinements spelled out.
numa-tools More support for NUMA hardware added.
taskset NUMA affinity tool added.
numactl NUMA memory-policy tool added.
numa-maps NUMA memory-reporting tool added.
index New keywords for 8 new sections.

03Oct06 resource-manager
 SLURM details expanded, AIX role noted.

27Mar06 cluster-administration
 LCRM support for PAM added, explained.

25Jan06 environment-variables
 Cross ref added to Env. Vars. manual.

21Nov05 chaos-goals Cross ref. to exec-shield added.
chaos-features How to detect CHAOS version added.
exec-shield New section explains security feature.
index New keyword for new section.

03May05 resource-manager
 SLURMD daemon and SMAP tool
 differences on BlueGene/L noted.

08Mar05 interconnect Elan environment vars. site.
environment-variables

 Cross ref to Elan MPI vars. added.

14Feb05 parallel-file-system
 Lustre usage help cross ref. added.

24Jan05 cluster-administration
 IPMI and WHATSUP tools added.

10Nov04 chaos-features Scheduler flexibility cross ref'd.
resource-manager

 SINFO roles, features spelled out.

24May04 resource-manager
 SQUEUE role, features spelled out.

18Mar04 introduction Details clarified.
resource-manager

CHAOS: Linux from Livermore - 36

 SRUN user benefits spelled out.

28Oct03 chaos-features SLURM now deployed.
resource-manager

 SINFO added, SRUN elaborated.
environment-variables

 Cross ref to SLURM variables added.

25Aug03 chaos-goals Cross ref to SLURM manual added.
resource-manager

 Cross ref to SLURM manual added.

15Jul03 chaos-goals LLNL Linux web site noted.
chaos-features

 Local kernel modifications summarized.
cluster-administration

 More tool details, links added.

10Mar03 entire First edition of CHAOS manual.

TRG 12Jun07

UCRL-WEB-200040
Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (12Jun07) Contact on the OCF: lc-hotline@llnl.gov, on the SCF: lc-hotline@pop.llnl.gov

CHAOS: Linux from Livermore - 37

http://www.llnl.gov/disclaimer.html

	Preface
	Introduction
	CHAOS Goals
	CHAOS Features
	Problems Addressed
	Diskless Node Support
	Managing Graphics Libraries

	High-Performance Interconnect
	Scalable Parallel File System
	Parallel Resource Manager (SLURM)
	Cluster Administration Tools
	For System Administrators
	For Users of NUMA Nodes
	TASKSET (Set CPU Affinity)
	NUMACTL (Control Memory Policy)
	NUMA-MAPS (Display Memory Use)

	Environment Variables For CHAOS
	Exec-Shield Security Feature
	Disclaimer
	Keyword Index
	Alphabetical List of Keywords
	Date and Revisions

